

Quality and Reliability

Reliability Report

BE Change Process:

PPAK matrix line in STS with Cu wires

TV1: LDFPT - UA63 TV2 :LDL112PT - UX56

General In	formation		Locations		
Product Lines	UA63	Wafer fab	CTM8+ NiPd PACTECH		
Product Description	Adjustable low drop volt reg (v min 0.8 V - 1A)				
P/N	LDFPT	Assembly plant	STS		
Product Group	AMS	/ coornary plant	010		
Product division	General Purpose Analog & RF Power Management	Reliability Lab	Catania Reliability LAB		
Package	PPAK				
Silicon Process technology	BCD6S				
General In	formation	Locations			
Product Lines	UX56	Wafer fab	CTM8		
Product Description	1.2 A low quiescent current LDO with reverse current protection				
P/N	LDL112PT	Assembly plant	STS		
Product Group	AMS				
Product division	General Purpose Analog & RF Power Management				
Package	PPAK		Catania Reliability LAB		
Silicon Process technology	BCD6S	Reliability Lab	QA Lab SHENZHEN		
		Reliability assessment	Pass		

DOCUMENT INFORMATION

Version	Date	Pages	Prepared by	Approved by	Comment
1.0	Feb-2018	6	Vito Gisabella	Giovanni Presti	Preliminary Report

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

AMS (Analog Mems Sensor Group) General Purpose Analog & RF Division Power Management Quality and Reliability

REL 6088-95-W-2018

TABLE OF CONTENTS

1	APPLICABLE AND REFERENCE DOCUMENTS							
2	GLOSSARY							
		ABILITY EVALUATION OVERVIEW						
	3.1	Objectives	3					
	3.2	TEST VEHICLE						
	3.3	CONCLUSION	3					
4	DEVI	CE CHARACTERISTICS	4					
	4.1	DEVICE DESCRIPTION	4					
		CONSTRUCTION NOTE						
5	TEST	S RESULTS SUMMARY						
	5.1	TEST VEHICLE	5					
	5.2	TEST PLAN AND RESULTS SUMMARY	5					
	5.3	TESTS DESCRIPTION	6					
	5.3	TESTS DESCRIPTION	c					

1 APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description
JESD47	Stress-Test-Driven Qualification of Integrated Circuits

2 GLOSSARY

DUT	Device Under Test
SS	Sample Size

3 RELIABILITY EVALUATION OVERVIEW

3.1 Objectives

To qualify the PPAK matrix line in ST Shenzhen.

3.2 Test vehicle

TV1:LDFPT – UA63 TV2:LDL112PT – UX56

Process changes

TECNOLOGy	LINE PN	CUP	Actual WIRE	New Wire in Matrix	Die Size (mm)	Ground Bonding	COMMENT
BCD6 (+NiPd)	UA63 LDFPT	YES	Au 1.2 mils	Cu 1.0 mils	1.357 x 0.805	8 wires Vout fix / 7 wires Vout adj, Ground wire	
BCD6	UX56 LDL112	NO	Au 1.2 mils	Cu 1.2 mils	0.92 x 0.92	7 wires, No Ground wire	

CUP = Circuit under pads

FE

LDFPT: BCD6 Technology, NiPd PACTECH LDL112: BCD6 Technology

ΒE

PPAK in Shenzhen matrix line Cu wire

3.3 Conclusion

The present report includes the preliminary results on both TVs, UA63 LDFPT and UX56 LDL112.

Qualification Plan requirements will be fulfilled without exception. It is stressed that the available results on reliability tests have shown that the devices behave correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests demonstrates the ruggedness of the products and safe operation, which is consequently expected during their lifetime.

Quality and Reliability

4 DEVICE CHARACTERISTICS

4.1 Device description

The LDF is a fast, very low drop linear regulator which operates from an input supply voltage in the range of 2.6 V to 16 V. It is available in fixed and adjustable output voltage versions, from 0.8 V to 12 V. The LDF features are: high output precision, very low-dropout voltage, low noise, and low quiescent current, therefore suitable for low voltage microprocessors and memory applications. Current and thermal protection are provided.

The LDL112 is a low-dropout linear regulator, which can provide a maximum current of 1.2 A, with a typical dropout voltage of 300 mV. It is stabilized with a ceramic capacitor on the output. The very low drop voltage, low quiescent current and reverse current protection features make it suitable for low power battery-powered applications. The enable logic control function puts the LDL112 in shutdown mode allowing a total current consumption lower than 1 µA. The device is equipped with current limit and thermal protection.

4.2 <u>Construction note</u>

	LDFPT	LDL112PT
Wafer/Die fab. information		
Wafer fab manufacturing location	CTM8	CTM8
Technology	BCD6S + NiPd PACTECH	BCD6S
Die finishing back side	Cr/NiV/Au	Cr/NiV/Au
Die size	1357x805	920x920
Bond pad metallization layers	NiPd	Ti/AlCu/TiNARC
Passivation type	TEOS/SiN/Polyimide	TEOS/SiN/Polyimide
Assembly information		
Assembly site	STS	STS
Package description	PPAK	PPAK
Mold Compound	Epoxy Halogen Free	Epoxy Halogen Free
Die attach	Soft solder	Soft Solder
Bond Wire	Copper 1.0 mils	Copper 1.2 mils

5 TESTS RESULTS SUMMARY

5.1 Test vehicle

Lot #	P/N	Line	Technology	Package	Comments
1 st	LDEDT		BCD6S		Circuit under pads
2 nd	LDFPT	UA63	+NiPd PACTECH	Pd PACTECH PPAK BCD6S	by ST Catania Rel. Lab
3 rd	LDL112PT	UX56	PCD6S		by ST Catania Rel. Lab
4 th	LDL112P1	0730	BCD05		by QA Lab SHENZHEN

5.2 Test plan and results summary

Test	PC	Std ref.	Conditions	SS	Steps		Fa	ailure/SS		Note
						1 st lot	2 nd lot	3 rd lot	4 th lot	
Die Orie	Die Oriented Tests					UA63 LDFPT	UA63 LDFPT	UX56 LDL112PT	UX56 LDL112PT	
			Ta = 125°C,		168 h	0/77				
			Bias= Vcc=+2V:+20V		500 h	run				
HTOL	Ν	JESD22	Blac= V00=12V1120V		1000 h					
moe		A-108	Ta = 125°C,		168 h			0/77		
			Bias= Vcc=+7V		500 h			run		
					1000 h					
		JESD22			168 h	0/25	0/25	0/25	0/80	
HTS	Ν	A-103	Ta = 150°C		500 h	run	run	run	0/80	
					1000 h				0/80	
Packag	e Or	iented Test								
PC		JESD22 A-113	Drying 24 H @ 125°C Store 168 H @ Ta=85°C Rh=85% Oven Reflow @ Tpeak=260°C 3 times		Final	pass	pass	pass	pass	go no go
AC	Υ	JESD22 A-102	Pa=2Atm / Ta=121°C		96h	0/25	0/25	0/25	0/97	
					100 cy	0/25	0/25	0/25	0/85	
тс	Υ	JESD22 A-104	Ta = -65°C to 150°C		200 cy	run	run	run	0/85	
					500 cy				0/85	
					168 h	0/25	0/25			
			Ta = 85°C, RH = 85%, 1°Lot Vcc= +2V:+16V		500 h	run	run			
THB	Y	JESD22	1 LOUVCC= +2V.+10V		1000 h					
пр	T	A-101			168 h			0/25		
			Ta = 85°C, RH = 85%, 3°Lot Vcc= +5.5V		500 h			run		
			3 LOI VCC = +5.5 V		1000 h					
Other Te	ests									
ESD	N	JEDEC22- C101	CDM			run		run		
CA	1		Construction Analysis			run				1

Quality and Reliability

5.3 Tests Description

Test name	Description	Purpose
Die Oriented		
HTOL High Temperature Operative Life	The device is stressed in static or dynamic configuration, approaching the operative max. absolute ratings in terms of junction temperature and bias condition.	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating condition in an accelerated way. The typical failure modes are related to, silicon degradation, wire-bonds degradation, oxide faults.
HTSL High Temperature Storage Life	The device is stored in unbiased condition at the max. temperature allowed by the package materials, sometimes higher than the max. operative temperature.	To investigate the failure mechanisms activated by high temperature, typically wire-bonds solder joint ageing, data retention faults, metal stress-voiding.
Package Oriented	-	
PC Preconditioning	The device is submitted to a typical temperature profile used for surface mounting devices, after controlled moisture absorption.	As stand-alone test: to investigate the moisture sensitivity level. As preconditioning before other reliability tests: to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop corn" effect and delamination.
AC Auto Clave (Pressure Pot)	The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.	To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.
TC Temperature Cycling	The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermo- mechanical stress induced by the different thermal expansion of the materials interacting in the die- package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, die- attach layer degradation.
THB Temperature Humidity Bias	The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambient temperature and relative humidity.	To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.
Other Tests	1	
ESD Electro Static Discharge	The device is submitted to a high voltage peak on all his pins simulating ESD stress according to different simulation models. CDM : Charged Device Model	To classify the device according to his susceptibility to damage or degradation by exposure to electrostatic discharge.
Ca Construction Analysis	Construction Analysis check	To verify the physical product conformity